Содержание:
- 1 Работа теплового насоса при работе по схеме «грунт-вода»
- 2 Расчет давления
- 3 Что такое тепловой насос и как он работает?
- 4 Основные элементы конструкции тепловых насосов
- 5 Принцип работы теплового насоса
- 6 Особенности тепловой системы воздух-вода
- 7 Принцип работы и назначение насоса
- 8 Виды геотермальных установок
- 9 Как работает тепловой насос
- 10 Что такое гидравлический расчёт
Работа теплового насоса при работе по схеме «грунт-вода»
Укладку коллектора в грунт можно произвести тремя способами.
Горизонтальный вариант
Трубы укладываются в траншеи «змейкой» на глубину, превышающую глубину промерзания грунта (в среднем – от 1 до 1,5 м).
Для такого коллектора потребуется участок земли достаточно большой площади, но зато его может построить любой домовладелец – никаких навыков, кроме умения работать лопатой, не понадобится.
Следует, правда, учесть, что сооружение теплообменника ручным способом – довольно трудоемкий процесс.
Вертикальный вариант
Трубы коллектора в виде петель, имеющих форму литеры «U», погружаются в скважины глубиной от 20 до 100 м. При необходимости можно построить несколько таких скважин. После установки труб скважины заливают цементным раствором.
Достоинство вертикального коллектора состоит в том, что для его строительства нужен совсем небольшой участок. Однако, пробурить скважины глубиной более 20 м самостоятельно нет никакой возможности – придется нанимать бригаду бурильщиков.
Комбинированный вариант
Этот коллектор можно считать разновидностью горизонтального, но для его строительства потребуется гораздо меньше места.
На участке выкапывается круглый колодец глубиной от 2-х м.
Трубы теплообменника укладываются спиралью, так что контур представляет собой как бы вертикально установленную пружину.
По завершении монтажных работ колодец засыпают. Как и в случае с горизонтальным теплообменником, весь необходимый объем работ можно произвести своими руками.
Коллектор заполняется антифризом – тосолом или раствором этиленгликоля. Для обеспечения его циркуляции в контур врезается специальный насос. Вобрав в себя тепло грунта, антифриз поступает к испарителю, где происходит теплообмен между ним и хладагентом.
Следует учесть, что неограниченный отбор тепла из грунта, особенно при вертикальном расположении коллектора, может привести к нежелательным последствиям для геологии и экологии участка. Поэтому в летний период ТН типа «грунт – вода» весьма желательно эксплуатировать в реверсивном режиме – кондиционирование.
Расчет давления
Если циркуляционный насос устанавливается во время монтажа основного обогревательного оборудования, существует необходимость в расчёте давления, относительно указанного аппарата. Осуществляется сие мероприятие при посредстве следующей формулы:
H=(R*L +Z’)/p*g.
Здесь присутствуют такие величины и значения:
R
-показатель сопротивления, касательно прямого участка трубопровода.
L
— длина самого трубопровода.
Z
— сопротивление, спровоцированные различными препятствиями, присутствующими на пути циркулирующего вещества (фитинги, арматура).
p
— показатель плотности носителя тепла при конкретной температуре.
g
— показатель ускорения, относительно свободного падения.
При расчёте насоса, устанавливаемого в уже функционирующую систему обогрева, используются приблизительные данные:
H=R*L*ZF
Здесь присутствуют следующие параметры:
R
-сопротивление прямой трубы. Примерное значение данной величины равняется 100-150 Паскаль на метр. Его следует отобразить в показателях давления. Тогда оно примет такой вид: 0,010-0,015 метра на один метр трубопровода.
В данном случае надо отталкиваться от максимального значения. Подобные действия не окажут отрицательного влияния на энергопотребление.
L
— общая длина труб. Если речь идёт о двухтрубной системе обогрева, следует учитывать продолжительность и подающего контура, о обратного.
ZF
— коэффициент умножения, который значительно упрощает процесс выполнения расчётных операций. Его значение зависит от таких обстоятельств:
- если система оснащена обычными шаровыми вентилями, исключающими уменьшение просвета, а также фитингами с соответствующими габаритами, коэффициент умножения равняется 1,3;
- когда в системе присутствует дроссель либо термостатический регулятор, который разрывает схему, применяется дополнительное значение, равное 1,7;
Пример расчёта
Если общая площадь квадратного помещения равны 150м2, то длина каждой из стен составит 12,25 метра. Следовательно, суммарную протяжённость трубопровода вычислить достаточно просто: 12,25 надо умножить на 4, в результате получится 49 метров.
Стоит отметить, что дроссели монтируются непосредственно на обогревательные приборы. При этом, разрыв основного кольца должен быть полностью исключён.
Подставляя имеющиеся значения в соответствующую формулу, можно определить искомое давление:
0,015*49*1,3=0,9555.
Важно заметить, что приобретаемый циркуляционный насос должен обладать запасом по напору,Э величина которого составляет, как минимум, десять процентов. Циркуляционный насос является обязательным элементом системы водяного отопления дома с принудительной или комбинированной (совмещенной) циркуляцией
А для того, чтобы она работала эффективно необходимо правильно выбрать модель с наиболее подходящими характеристиками. Из материала этой статьи вы можете узнать, как самостоятельно осуществить подбор циркуляционного насоса для системы отопления
Циркуляционный насос является обязательным элементом системы водяного отопления дома с принудительной или комбинированной (совмещенной) циркуляцией. А для того, чтобы она работала эффективно необходимо правильно выбрать модель с наиболее подходящими характеристиками. Из материала этой статьи вы можете узнать, как самостоятельно осуществить подбор циркуляционного насоса для системы отопления.
Что такое тепловой насос и как он работает?
Под термином тепловой насос понимается набор определенного оборудования. Основной функцией этого оборудования является сбор тепловой энергии и ее транспортировка к потребителю. Источником такой энергии может стать любое тело или среда, обладающая температурой от +1º и более градусов.
В окружающей нас среде источников низкотемпературного тепла более чем достаточно. Это промышленные отходы предприятий, тепловых и атомных электростанций, канализационные стоки и пр. Для работы тепловых насосов в сфере отопления дома нужны три самостоятельно восстанавливающихся природных источника – воздух, вода, земля.
Тепловые насосы “черпают” энергию из процессов, регулярно происходящих в окружающей среде. Течение процессов никогда не прекращается, потому источники признаны неисчерпаемыми по человеческим критериям
Три перечисленных потенциальных поставщика энергии напрямую связаны с энергией солнца, которое путем нагревания приводит в движение воздух с ветром и сообщает тепловую энергию земле. Именно выбор источника является основными критерием, согласно которому классифицируют тепловые насосные системы.
Принцип действия тепловых насосов базируется на способности тел или сред передавать тепловую энергию другому телу или среде. Получатели и поставщики энергии в тепловых насосных системах работают обычно в паре.
Так различают следующие виды тепловых насосов:
- Воздух – вода.
- Земля – вода.
- Вода – воздух.
- Вода – вода.
- Земля – воздух.
- Вода – вода
- Воздух – воздух.
При этом первое слово определяет тип среды, у которой система отбирает низкотемпературное тепло. Второе указывает на вид носителя, которому и передается эта тепловая энергия. Так, в тепловых насосах вода – вода, тепло отбирается у водной среды и в качестве теплоносителя используется жидкость.
Тепловые насосы по конструктивному типу являются парокомпрессионными установками. Они извлекают тепло из природных источников, обрабатывают и транспортируют его к потребителям (+)
Современные тепловые насосы используют три основных источника тепловой энергии. Это – грунт, вода и воздушная среда. Самый простой из этих вариантов – воздушный тепловой насос. Популярность таких систем связана с их довольно несложной конструкцией и простотой монтажа.
Однако несмотря на такую популярность, эти разновидности имеют довольно низкую производительность. К тому же КПД нестабилен и зависим сезонных колебаний температурного режима.
С понижением температуры их производительность значительно падает. Такие варианты тепловых насосов можно рассматривать как дополнение к имеющемуся основному источнику тепловой энергии.
Варианты оборудования, использующего тепло грунта, считаются более эффективными. Грунт получает и аккумулирует тепловую энергию не только от Солнца, он постоянно подогревается за счет энергии земного ядра.
То есть грунт является своеобразным тепловым аккумулятором, мощность которого, практически, не ограничена. Причем температура грунта, особенно на некоторой глубине, постоянна и колеблется в незначительных пределах.
Сфера применения энергии, вырабатываемой тепловыми насосами:
Постоянство температуры источника является важным фактором стабильной и эффективной работы данного вида энергетического оборудования. Аналогичными характеристиками обладают системы, в которых водная среда является основным источником тепловой энергии. Коллектор таких насосов располагают либо в скважине, где он оказывается в водоносном слое, либо в водоеме.
Среднегодовая температура таких источников, как грунт и вода, варьируется от +7º до + 12º С. Такой температуры вполне достаточно для того, чтобы обеспечить эффективную работу системы.
Наиболее эффективными считаются тепловые насосы, извлекающие тепловую энергию из источников со стабильными температурными показателями, т.е. из воды и грунта
Основные элементы конструкции тепловых насосов
Для того чтобы установка получения энергии работала согласно принципам работы теплового насоса, в его конструкции должны присутствовать 4 основных агрегата, это:
- Компрессор.
- Испаритель.
- Конденсатор.
- Дроссельный клапан.
Важным элементом конструкции теплового насоса является компрессор. Его основная функция – повышение давления и температуры паров, образующихся в результате кипения хладагента. Для климатической техники и тепловых насосов в частности применяются современные спиральные компрессоры.
В качестве рабочего тела, осуществляющего непосредственный перенос тепловой энергии, используются жидкости с низкой температурой кипения. Как правило, используется аммиак и фреоны (+)
Такие компрессоры рассчитаны на эксплуатацию при минусовых температурах. В отличие от других разновидностей спиральные компрессоры производят мало шума и работают, как при низких температурах кипения газа, так и при высоких температурах конденсации. Несомненным преимуществом считаются их компактные размеры и небольшой удельный вес.
Практически вся энергия теплового насоса затрачивается на транспортировку тепловой энергии извне внутрь помещения. Так на работу систем уходит около 1 энергетической единицы при производстве 4 – 6 единиц (+)
Испаритель как конструктивный элемент представляет собой емкость, в которой происходит превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора.
В компрессоре пары хладагента подвергаются действию давления и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора.
Компрессор сжимает циркулирующую по контуру среду, в результате чего увеличивается ее температура и давление. Затем сжатая среда поступает в теплообменник (конденсатор), где охлаждается, передавая тепло воде либо воздуху
Следующий конструктивный элемент системы – конденсатор. Его функция сводится к отдаче тепловой энергии внутреннему контуру отопительной системы.
Серийные образцы, изготавливаемые промышленными предприятиями, оснащаются пластинчатыми теплообменниками. Основным материалом для таких конденсаторов служит легированная сталь или медь.
Для самостоятельного изготовления теплообменника подойдет медная трубка диаметром полдюйма. Толщина стенок труб, используемых для изготовления теплообменника, должна быть не менее 1 мм
Терморегулирующий, или иначе дроссельный, клапан устанавливается в начале той части гидравлического контура, где циркулирующая среда высокого давления преобразуется в среду с низким давлением. Точнее дроссель в паре с компрессором делят контур теплового насоса на две части: одну с высокими параметрами давления, другую – с низкими.
При прохождении через расширительный дроссельный вентиль циркулирующая по замкнутому контуру жидкость частично испаряется, вследствие чего давление вместе с температурой падают. Затем поступает в теплообменник, сообщающийся с окружающей средой. Там захватывает энергию среды и переносит ее обратно в систему.
С помощью дроссельного клапана происходит регулирование потока хладагента в сторону испарителя. При выборе клапана нужно учитывать параметры системы. Клапан должен соответствовать этим параметрам.
При прохождении через теплорегулирующий клапан жидкий теплоноситель частично испаряется, а температура потока понижается (+)
Принцип работы теплового насоса
Система отопления, основанная на тепловом насосе, включается в свой состав кроме этого оборудования еще и устройства для забора и распределение тепла. Если говорить о составе внутреннего контура такого насосного оборудования, то выделим следующие компоненты:
- компрессор, который получает питание от электросети;
- испаритель;
- дроссельный клапан;
- конденсатор.
Заметим, что основные принципы работы этого оборудования были разработаны еще два столетия назад и известны как цикл Карно. Работа теплового насоса осуществляется следующим образом:
- В качестве теплоносителя используется незамерзающая жидкость, которая подается в коллектор. Незамерзайка может представлять собой:
- воду, разведенную со спиртом;
- соляной раствор;
- гликолевую смесь.
- Эти вещества обладают способностью поглощать тепловую энергию и транспортировать ее к насосу.
- Оказавшись в испарителе, тепло направляется к хладагенту. Это вещество отличается низкой температурой кипения. Под воздействием тепловой энергии хладагент вскипает. В результате образуется пар.
- Работающий компрессор поднимает давление пара, из-за чего происходит рост температуры воздуха.
- Передача тепла от воды системе отопления осуществляется через другой элемент — конденсатор. Хладагент с целью выжима дополнительного тепла еще раз охлаждается, превращается в жидкость, а затем отправляется в коллектор.
- Далее этот процесс повторяется по такому же циклу.
Если говорить простыми словами, то тепловой насос представляет собой оборудование, которое работает почти по такому же принципу, что и холодильник, только наоборот. Если взять обычный холодильник, то в нем хладагент, движущийся по контуру, получает тепло от продуктов питания, размещаемых на хранение. В конце цикла он выводит его на заднюю стенку. То же самое тепло используется и в случае с тепловым насосом, только оно применяется для подогрева теплоносителя, благодаря которому обеспечивается нагрев воздуха.
Система отопления на основе теплового насоса, конечно же, потребляет электрическую энергию. Но, заметим, что ее количество, требуемое для работы, неизмеримо меньше, чем для обычного электрического котла. Так, расходуя 1 кВт электрической энергии, котел, нагревающий воду, производит 5 кВт тепловой энергии.
Особенности тепловой системы воздух-вода
Тепловой насос, которому посвящена эта статья, в отличие от других модификаций подобного устройства (в частности, вода-вода и грунт-вода), обладает рядом достоинств:
- экономит электричество;
- для установки не потребуются масштабные земельные работы, бурение скважин, получение специальных разрешений;
- если подключить систему к солнечным батареям, то можно обеспечить полную ее автономность.
Веское преимущество тепловой системы, извлекающей энергию ветра и передающей ее воде, заключается в стопроцентной экологической безопасности.
Перед тем, как приступать к конструированию насоса, необходимо выяснить, в каких случаях система проявляет себя максимально эффективно, а когда ее использование нецелесообразно.
Тепловая насосная система, извлекающая энергию из воздушной массы, может использоваться для подогрева всех видов теплоносителей, применяющихся на территории СНГ: воды, воздуха, пара
Специфика применения и работы
Тепловой насос продуктивно работает исключительно в температурном диапазоне от -5 до +7 градусов. При температуре воздуха от +7 система будет вырабатывать больше тепла, чем необходимо, а при показателе ниже -5 – недостаточно для обогрева. Это связано с тем, что концентрированный фреон, находящийся в конструкции, закипает при температуре -55 градусов.
Теоретически система может вырабатывать тепло и в 30-градусный мороз, но его будет недостаточно для обогрева, ведь теплопроизводительность напрямую зависит от разности температуры кипения хладагента и температуры воздуха.
Поэтому жителям Северных регионов, где холода наступают раньше, эта система не подойдет, а в домах Южных областей она сможет эффективно прослужить несколько холодных месяцев.
Если в помещении установлены стандартные батареи, то тепловой насос будет работать менее эффективно. Лучше всего устройство воздух-вода сочетается с конвекторами и иными радиаторами с большой площадью, а также с системами «теплый пол», «теплые стены» водного типа.
Также само помещение должно быть хорошо утеплено снаружи, обладать встроенными многокамерными окнами, обеспечивающими лучшую теплоизоляцию, чем обычные деревянные или пластиковые.
Тепловой насос лучше всего взаимодействует с водяной системой «теплый пол», не требующей нагрева теплоносителя свыше 40 – 45º С
Самодельный тепловой насос сможет эффективно обогревать дома площадью до 100 кв. м и гарантировано выдавать мощность в 5 кВт. Следует понимать, что фреон невозможно залить достаточно качественно в конструкцию, созданную в бытовых условиях, поэтому следует рассчитывать на температуру его кипения до -22 градусов.
Устройство домашней сборки идеально подойдет для снабжения теплом гаража, теплицы, подсобных помещений, небольшого частного бассейна и др. Система обычно используется в качестве дополнительного обогрева.
Электрокотел или иное традиционное оборудование для отопительного сезона потребуется в любом случае. Во время сильных морозов (-15-30 градусов) тепловой насос рекомендуется выключать, чтобы избежать растрат электроэнергии, ведь в этот период его эффективность составляет не больше 10%.
Тепловые насосы поставляют достаточное количество энергии для обогрева воды в крытых частных бассейнах (+)
Принцип действия системы
Рабочее вещество в конструкции – воздух. Через наружный блок, устанавливающийся на улице, кислород по трубам поступает в испаритель, где взаимодействует с хладагентом.
Фреон под действием температуры становится газообразным (поскольку закипает при -55 градусах) и в нагретом виде под давлением поступает в компрессор. Устройство сжимает газ, тем самым увеличивая его температуру.
Горячий фреон поступает в контур накопительного бака (конденсатора), где происходит отдача тепла воде, которую впоследствии можно использовать для организации отопления и ГСВ. В конденсаторе фреон лишается только части своего тепла, и все еще находится в газообразном состоянии.
Проходя через дроссель, хладагент распрыскивается, в результате чего его температура понижается. Фреон становится жидким и в таком виде переходит в испаритель. Цикл повторяется.
На рисунке схематически показана реализация принципа элементарного теплового насоса, разделенного компрессором и расширителем на два контура – высокого и низкого давления
Желающим самостоятельно соорудить тепловой насос из бросовых материалов и отслужившей техники, к примеру, из старого холодильника, поможет информация, изложенная в рекомендуемой нами статье.
Принцип работы и назначение насоса
Основная проблема жителей последних этажей многоквартирной постройки и владельцев загородных коттеджей — это холодные батареи. В первом случае теплоноситель просто-напросто не доходит до их жилья, а во втором — не обогреваются самые дальние участки трубопровода. А все это из-за недостаточного давления.
Когда необходимо применять насос?
Единственным правильным решением в ситуации с недостаточным давлением будет модернизация отопительной системы с теплоносителем, циркулирующим под действием силы гравитации. Здесь поможет установка насоса. Основные схемы организации отопления с насосной циркуляцией рассмотрены здесь.
Этот вариант будет эффективен и для владельцев частных домов, позволяя ощутимо уменьшить расходы на отопление. Существенное преимущество такого циркуляционного оборудования — возможность менять скорость движения теплоносителя. Главное, не превышать максимально допустимые показания для диаметра труб своей отопительной системы, чтобы избежать излишнего шума при работе агрегата.
Так, для жилых комнат при условном проходе труб в 20 и более мм скорость составляет 1 м/с. Если установить этот параметр на самое высокое значение, то можно за максимально короткое время прогреть дом, что актуально в случае, когда хозяева были в отъезде и постройка успела остыть. Это позволит получить максимальное количество тепла при минимальных затратах времени.
Насос — важный элемент системы обогрева дома. Он помогает повысить ее эффективность и снизить траты топлива
Принцип работы прибора
Циркуляционный агрегат функционирует за счет электродвигателя. Он забирает нагретую воду с одной стороны и подталкивает в трубопровод, находящийся с другой. А с этой стороны снова поступает новая порция и все повторяется.
Именно за счет центробежной силы тепловой носитель перемещается по трубам системы обогрева. Процесс функционирования насоса немного напоминает работу вентилятора, только циркулирует не воздух по комнате, а теплоноситель по трубопроводу.
Корпус устройства обязательно выполняется из устойчивых к коррозии материалов, а для изготовления вала, ротора и колеса с лопастями обычно используется керамика.
Виды геотермальных установок
Принцип работы геотермального отопления дома мы рассмотрели, теперь разберемся, какие существуют разновидности тепловых установок. Они разливаются по виду используемых теплоносителей и среды, в которую погружены контуры.
Земля-вода
Этот тип насосов отбирает тепловую энергию у почвы и передает ее воде в отопительной системе дома. Для отбора тепла используются коллекторы или зонды.
Внешний контур для получения тепла из земли может быть размещен вертикально и горизонтально. В первом случае обеспечивается постоянная положительная температура на дне скважины, но чтобы ее пробурить, понадобится специальное оборудование. Для устройства вертикального теплообменника нужно бурить скважину диаметром 150 мм на глубину 50-200 м.
Во втором случае трубы контура укладываются горизонтально на 1 м глубже поверхности, поэтому котлованы можно вырыть собственноручно. Но из-за значительной протяженности контура горизонтальные контуры применяют только на больших придомовых участках.
Вода-вода
Обычно используют теплообменник, который уложен на дне водоема, расположенного на расстоянии не более 100 м от дома. Подойдут только естественные водоемы – пруды, озера. Для укладки труб в реку нужно получать разрешение. Главное требование – глубина водоема не может быть меньше 3-х метров.
Вместо водоема тепло воды можно получать из артезианской скважины. Добытая вода пропускается через тепловой насос. Однако откачанную воду нужно сбрасывать обратно в грунт, поэтому делают вторую скважину. Благодаря этому поддерживается постоянное давление в земном пласте.
Воздух-вода
Для работы оборудования понадобятся испарители и вентиляторы. Наибольшая эффективность работы достигается при температуре окружающего воздуха не ниже -15°С. Если температурные показатели опускаются ниже, теряется часть мощности.
Преимущество станций заключается в простоте монтажа. Не нужно рыть котлованы или бурить скважины. Всю конструкцию можно расположить на крыше дома. Оборудование работает бесшумно и может повторно использовать тепло, выходящее из помещений.
Как работает тепловой насос
Любой теплонасос состоит из испарителя, конденсатора, расширителя, понижающего давление, и компрессора, который давление повышает.
Все эти устройства соединены в один замкнутый контур трубопроводом. По трубам циркулирует хладагент, инертный газ с очень низкой температурой кипения, поэтому в одной части контура, холодной, он представляет собой жидкость, а во второй, теплой, он переходит в газообразное состояние.
Двигаясь дальше, газ перемещается в компрессор, где под действием высокого давления сжимается, а его температура при этом повышается. Став горячим, газ поступает в конденсатор, который также является теплообменником. В нем происходит передача тепла от горячего газа к теплоносителю обратного трубопровода, входящего в отопительную систему дома. Отдав тепло, газ охлаждается и снова переходит в жидкое состояние, в то время, как нагретый теплоноситель поступает в систему горячего водоснабжения и отопления. Проходя через редукционный клапан расширителя, сжиженный газ снова попадает в испаритель – цикл замыкается.
Что такое гидравлический расчёт
Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:
- диаметр и пропускную способность труб;
- местные потери давления на участках;
- требования гидравлической увязки;
- общесистемные потери давления;
- оптимальный расход воды.
Согласно полученным данным осуществляют подбор насосов.
Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор).
Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).
Комплексные задачи — минимизация расходов:
- капитальных – монтаж труб оптимального диаметра и качества;
- эксплуатационных:
- зависимость энергозатрат от гидравлического сопротивления системы;
- стабильность и надёжность;
- бесшумность.
Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений
Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:
- по удельным потерям (стандартный расчёт диаметра труб);
- по длинам, приведённым к одному эквиваленту;
- по характеристикам проводимости и сопротивления;
- сопоставление динамических давлений.
Два первых метода используются при неизменном перепаде температуры в сети.
Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.
Дата: 25 сентября 2020