Содержание:
Расчет температурного режима работы отопления
Во время расчета теплоснабжения необходимо учитывать свойства всех компонентов. В особенности это касается радиаторов. Какая оптимальная температура должна быть в батареях отопления — +70°С или +95°С? Все зависит от теплового расчета, который выполняется еще на этапе проектирования.
Пример составления температурного графика отопления
Сначала необходимо определить тепловые потери в здании. На основе полученных данных выбирается котел с соответствующей мощностью. Затем наступает самый сложный этап проектирования – определение параметров батарей теплоснабжения.
Они должны обладать определенным уровнем теплоотдачи, которая повлияет на график температуры воды в системе отопления. Производители указывают это параметр, но только для определенного режима работы системы.
Если для поддержания комфортного уровня нагрева воздуха в комнате потребуется затратить 2 кВт тепловой энергии – значит радиаторы должны обладать не меньшим показателем теплоотдачи.
Для определения этого необходимо знать следующие величины:
- Допустимо максимальную температуру воды в системе отопления –t1. Она зависит от мощности котла, температурным пределом воздействия на трубы (в особенности полимерные);
- Оптимальная температура, которая должна быть в обратных трубах отопления – t Это определяется типом разводки магистралей (однотрубная или двухтрубная) и общей протяженностью системы;
- Необходимая степень нагрева воздуха в помещении –t.
Имея эти данные можно рассчитать температурный напор батареи по следующей формуле:
Далее для определения мощности радиатора следует воспользоваться такой формулой:
Где k – коэффициент теплопередачи прибора отопления. Это параметр должен быть указан в паспорте; F – площадь радиатора; Тнап – тепловой напор.
Варьируя различные показатели максимальной и минимальной температуры воды в системе отопления можно определить оптимальный режим работы системы
Важно правильно изначально рассчитать требуемую мощность отопительного прибора. Чаще всего показатель низкой температуры в батареях отопления связан с ошибками проектирования отопления. Специалисты рекомендуют к полученной величине мощности радиатора прибавить небольшой запас – порядка 5%
Это понадобится в случае критического снижения температуры на улице в зимний период
Специалисты рекомендуют к полученной величине мощности радиатора прибавить небольшой запас – порядка 5%. Это понадобится в случае критического снижения температуры на улице в зимний период.
Большинство производителей указывают теплоотдачу радиаторов согласно принятым стандартам EN 442 для режима 75/65/20. Это соответствует норме температуры отопления в квартире.
Способы увеличения теплоотдачи
С точки зрения отдачи в пространство максимального количества тепла менее эффективен, чем труба, разве что шар. У него еще худшее соотношение поверхности к объему.
Что же делали предки, чтобы эти чудовищные отопительные приборы грели?
Как увеличить теплоотдачу трубы?
Увеличивали инфракрасное излучение отопительного прибора . Простая окраска регистра черной матовой краской давала ощутимое потепление в помещении. Кстати, нынешнее хромирование современных змеевиков для ванной выглядит эффектно, но с точки зрения теплоотдачи прибора — идиотизм чистейшей воды.
Увеличена теплоотдача труб стальных может быть и благодаря оребрению, наваренному или смонтированному иным способом снаружи трубы . Конечная стадия реализации этого способа — конвектор, виток трубы с поперечными пластинами. Разумеется, в этом случае все методы расчета теплоотдачи трубы неприменимы — труба отдает в этом приборе меньшую часть тепла.
Виды
Разборный
Наиболее популярный вариант, годится для работы с теплоносителями разных основ (в жидком, парообразном или газовом состоянии, с различной средой, давлением и температурой). Они разборные пластинчатые теплоообменники крайне гибкие в конструктивных настройках. Для повышения или понижения площади теплообменного процесса устанавливаются новые пластины либо устраняются старые.
Его просто демонтировать и разбирать для проведения очистительных или ремонтных работ. Пользователям не потребуется обращаться к третьим лицам (сервис), что позволяет существенно сэкономить денежные средства.
Разновидность разборного теплообменника — полусварный. Одна его часть представлена сварной, вторая — разборной. На практике он используется нечасто, большее предпочтение всегда отдают разборному варианту, он более удобный.
Паянный
Преимущество паянного теплообменника: повышенная выдержка давления и температуры. Недостаток: при изменениях в рабочем режиме и смене показателей тепловой мощности, придется полностью заменить устройство, гибкой настройкой оно не обладает.
Ремонтировать поломки также довольно сложно: конструкцию нужно снимать полностью и отвозить в сервис, так как попытка самостоятельно выполнить ремонт вряд ли увенчается успехом. Отсутствие теплообменника в период ремонта приведет к длительному простою в производстве, финансовым издержкам для организации.
Полотенцесушители
Полотенцесушитель для ванной сам является наглядным примером того, как можно улучшить теплоотдачу трубы. «Змеевик» прибора – не что иное, как искусственно увеличенная площадь теплового излучения. Поскольку раньше они были лишь частью общей ветки отопления, изменить диаметр представлялось возможным. Поэтому площадь теплопередачи увеличивалась путем простого наращивания длины.
Кстати, как раз водяной полотенцесушитель из нержавеющей стали будет неплохо смотреться в черном цвете. Блестящие и хромированные изделия, хоть и выглядят красиво, препятствуют теплообмену между трубой и окружающей средой.
Для вертикально ориентированных систем, таких как радиаторы , имеет значение способ подключения входных и выходных труб. Теплоотдача одного прибора при разной установке может значительно измениться:
- 100% эффективности – диагональное подключение (вход горячей воды сверху, выход с обратной стороны внизу);
- 97% – одностороннее с верхним входом;
- 88% – нижнее ;
- 80% – диагональное обратное (с нижним входом);
- 78% – одностороннее с нижним входом и выходом отработанной воды.
Конструктивные особенности пластинчатого теплообменника
Отличительной чертой устройства переноса теплоты является наличие пакета, состоящего из пластин. Они представляют собой гофрированные элементы, изготовленные из металла. Если точнее, то пластины производятся в большинстве случаев из нержавеющей стали, так как она прекрасно выдерживает воздействия теплоносителя, обладающего низким качеством.
Эти элементы соединяются между собой. При этом их крепление осуществляется с поворотом на 180 градусов относительно друг друга. Помимо пакета пластин, в состав теплообменника этого типа еще входит:
• подвижная плита;
• неподвижная плита, на которой расположены патрубки для присоединения трубопроводов;
• элементы крепления, благодаря которым происходит стягивание 2-х плит и создается рама;
• две направляющие (верхняя и нижняя), имеющие вид круглого прута.
Такая продуманная компоновка устройства позволяет создавать аппараты, отличающиеся компактными габаритами.
Рама пластинчатого теплообменника служит для закрепления пластин, которые изготавливаются не только из нержавейки, но и из меди или графита. Благодаря тому, что поверхность устройства является своеобразной, она создает довольно сильную турбулентность средам, использующимся для переноса тепла и движущимся по трубам. За счет этого возрастает теплопередача у аппарата.
После установки гофрированных пластин на свои места образуется две герметичные системы, полностью изолированные друг от друга. Именно по ним движется холодная и горячая среда. Благодаря такой конструкции происходит теплообмен.
Из гофрированных пластин собирается пакет. При этом они располагаются крест-накрест. Такое их размещение позволяет создать жесткую конструкцию. Все гофрированные пластины оснащаются прокладками для уплотнения соединений. Это очень важные элементы, обеспечивающие хорошую герметичность устройства особенно в рабочем состоянии. Прокладки позволяют теплоносителям бесперебойно протекать в противоположных направлениях по трубам. Они имеют особую конфигурацию. Благодаря такой конструктивной особенности уплотнительных элементов не допускается смешивание холодной и горячей среды.
Высокий требуемый коэффициент передачи тепла будет обеспечен, если правильно подобрать размер теплообменника в соответствии с заданным объемом проходящей среды. Тем более в таком устройстве наблюдается повышенная турбулентность носителя тепла.
Теплообменник, состоящий из гофрированных пластин — это устройство поверхностного типа. По нему движется нагреваемая и нагревающая среда. Между ними происходит передача тепла через стенку из металла. Именно она получила название — поверхность теплообмена. Основными элементами такого теплообменника являются гофрированные пластины. Эти элементы достаточно тонкие и изготавливаются методом штампования.
Применяются пластинчатые теплообменники, как нагревательные или охладительные устройства. Их используют в разных технологических процессах, а также в нефтяной, газовой промышленности и во многих других отраслях. На фото ниже представлен пластинчатый теплообменник в индивидуальном тепловом пункте многоквартирного дома.
Здесь он используется для подогрева холодной воды в систему ГВС дома, система горячего водоснабжения при этом закрытая.
Принцип работы теплообменника
Во время осуществления теплообмена движение жидкостей происходит по направлению друг к другу. Наличие специального элемента из стали или дополнительного резинового уплотнения позволяет предотвратить смешение жидкостей в тех местах, где существует возможность протекания.
В зависимости от того, в каких именно условиях планируется эксплуатация конкретного теплообменника, количество пластин, а также способ обработки их поверхности, могут отличаться. Это относится и к применяемым расходным материалам.
Так, производители предлагают не только изделия из доступной нержавеющей стали, но и модели, выполненные из современных сплавов, устойчивые к длительному воздействию агрессивных сред.
Смесительные теплообменные аппараты
В тепломассообменных аппаратах и установках контактного (смесительного) типа процессы тепло- и массообмена протекают при непосредственном соприкосновении двух и более теплоносителей.
Тепловая производительность контактных аппаратов определяется поверхностью соприкосновения теплоносителей. Поэтому в конструкции аппарата предусматривается разделение потока жидкости на мелкие капли, струи, пленки, а газового потока — на мелкие пузырьки. Передача теплоты в них происходит не только путем кондуктивной теплопередачи, но и путем обмена массой, причем при массопередаче возможен даже переход теплоты от холодного теплоносителя к горячему. Например, при испарении холодной воды в горячем газе теплота испарения переносится от жидкости к газу.
Контактные теплообменники нашли широкое применение для конденсации паров, охлаждения газов водой, нагревания воды газами, охлаждения воды воздухом, мокрой очистки газов и т. п.
По направлению потока массы контактные теплообменники могут быть разделены на две группы:
1) аппараты с конденсацией пара из газовой фазы. При этом происходят осушка и охлаждение газа и нагревание жидкости (конденсаторы, камеры кондиционеров, скрубберы);
2) аппараты с испарением жидкости в потоке газа. При этом увлажнение газа сопровождается его охлаждением и нагреванием жидкости или его нагреванием и охлаждением жидкости (градирни, камеры кондиционеров, скрубберы, распылительные сушилки).
По принципу диспергирования жидкости контактные аппараты могут быть насадочными, каскадными, барботажными, полыми с разбрызгивателями и струйными (рис. 8).
Каскадные (полочные) аппараты применяются преимущественно в качестве конденсаторов смещения (рис. 8, а). В полом вертикальном цилиндре установлены на определенном расстоянии одна от другой (350…550 мм) плоские перфорированные полки в виде сегментов. Охлаждающая жидкость подается в аппарат на верхнюю полку. Основная масса жидкости вытекает через отверстия в полке тонкими струями, меньшая ее часть переливается через борт на нижележащую полку.
Пар для конденсации подается через патрубок в нижней части конденсатора и движется в аппарате противотоком к охлаждающей жидкости. Жидкость вместе с конденсатом выводится через нижний патрубок аппарата и барометрическую трубу, а воздух отсасывается через верхний патрубок вакуум-насосом. Кроме сегментных полок в барометрических конденсаторах применяются кольцевые, конические и иной формы полки.
Барботажные аппараты (рис. 8, б) отличаются простотой конструкции, их применяют для нагревания воды паром, выпаривания агрессивных жидкостей и растворов, содержащих шламы, взвеси и кристаллизующиеся соли, горячими газами и продуктами сгорания топлива. Принцип работы барботажных подогревателей и испарителей состоит в том, что перегретый паp или горячие газы, поступающие в погруженные барботеры, диспергируются в пузырьки, которые при всплытии отдают теплоту жидкости и одновременно насыщаются водяным паром. чем больше пузырьков образуется в растворе, тем лучше структура барботажного слоя и тем больше межфазная поверхность. Структура барботажного слоя зависит от размеров газовых пузырьков и режима их движения.
Рис. 8. Виды смесительных теплообменников: а — каскадный теплообменник; б —барботажный; в — полый с разбрызгивателем; г — струйный; д — насадочная колонна: 1 — контактная камера; 2 — насадка; 3 — штуцер для входа газа; 4 — патрубок для подачи жидкости; 5 — штуцер для удаления газа; 6 — спускной штуцер для жидкости; 7 — распылительное устройство; 8 — распределительная тарелка; 9 — решетка
Полые контактные теплообменники (с разбрызгивателями) нашли применение при конденсации паров, охлаждении, сушке и увлажнении газов, упаривании и сушке растворов, нагревании воды и др. На рис. 8, в показана схема контактного водонагревательного теплообменника.
Струйные (эжекторные аппараты) применяются редко и только для конденсации паров. На рис. 8, г показана схема такого конденсатора.
Конструктивно смесительные теплообменные аппараты выполняются в виде колонн из материалов, устойчивых к воздействию обрабатываемых веществ, и рассчитываются на соответствующее рабочее давление. Насадочные и полые аппараты чаще всего изготовляются железобетонными или кирпичными. Каскадные, барботажные и струйные аппараты выполняются из металла. Высота колонн обычно в несколько раз превышает их поперечное сечение.
Каждому типу контактного устройства свойственны особенности, которые следует учитывать при выборе аппарата.
Какие бывают теплообменники
Теплообменные пластины всегда имеют идентичную конструкцию, как и материал, из которого они сделаны. Сложные сплавы выбирают для того, чтобы иметь возможность противостоять вредному действию от теплообменной среды. В основном, титановые сплавы используются для пластин теплообменников на судах, где в качестве вредоносной среды идет морская вода.
Пластинчатые теплообменники могут отличаться методом сборки.
Методы сборки пластинчатых теплообменников бывают:
- Паяные;
- Разборные;
- Полусварные и сварные.
Пластинки в них выполняют основную функцию, которая лежит на теплообменнике. Они так же имеют контакт со средами, в которых должна постоянно изменяться температура. Пластинки внутри самого теплообменника имеют рельефную форму. Площадь теплообменника увеличивается в зависимости от формы самого рельефа. Стандартные пластины должны иметь симметричный рельеф. Если платины рифленые под углом в 30 градусов, то они называют жестким. Такое рифление обеспечивает высокий КПД теплообменника, однако в результате этого теряется давление. Применяемое рифление в 120 градусов обеспечивает потери давления меньшие, однако, при этом, и сам теплообмен происходит слабее. Пластины со средне выполненным каналом имеют рифление равное 60градусам. Кроме этого, существуют пластины, которые имеют комбинированный рельеф, называемый елочкой. Он дает дающий различные конфигурации каналов. Для работы, в один теплообменник иногда вставляют пластины с несколькими видами рифления каналов. Это что обеспечивает повышенную эффективность работы агрегата.
Особенности конструкции
Основное предназначение любого вида пластичного теплообменника состоит в преобразовании нагретой жидкости в охлажденную среду. Конструкция пластинчатого теплообменника имеет разборные части, а состоит устройство из следующих элементов:
- набора пластин;
- подвижной и неподвижной плиты;
- верхней и нижней направляющей округлой формы;
- элементов крепления, которые объединяют плиты в общую раму.
Размеры рам разных изделий могут значительно различаться. Они будут зависеть от теплоотдачи и мощности нагревателя — с большим количеством пластин повышается продуктивность оборудования и, естественно, увеличивается вес и габариты.
На теплообменнике можно управлять мощностью – увеличивать или уменьшать
Преимущества пластинчатых приборов:
- незначительные производственные и инвестиционные затраты;
- высокоэффективная теплопередача;
- малые габариты;
- эффект самоочистки с помощью высокого турбулентного потока;
- возможность увеличить КПД благодаря добавлению пластин;
- высокая степень надежности;
- легкость промывки;
- небольшая масса;
- легкость монтажа;
- минимальное загрязнение поверхностей;
- невозможность смешения жидкостей за счет особой конфигурации уплотнения;
- высокая устойчивость к коррозии;
- минимальная поверхность теплообмена благодаря высокому КПД;
- незначительные потери давления благодаря оптимальному выбору пластин с разными видами профилей;
- эффективная регулировка температуры за счет небольшого объема теплоносителя.
В этом видео вы узнаете, как образуется горячая вода благодаря теплообменнику:
Промывка пластинчатого теплообменника
Функциональность и работоспособность агрегата в значительной степени зависит от качественной и своевременной промывки. Частота промывки обусловлена интенсивностью работы и особенностями технологических процессов.
Методика проведения очистных работ
Образование накипи в теплообменных каналах является наиболее распространенным видом загрязнения ПТО, ведущим к снижению интенсивности теплообмена уменьшению общего КПД установки. Удаление накипи производится с помощью химической промывки. Если помимо накипи присутствуют другие виды загрязнения, необходимо произвести механическую очистку пластин теплообменника.
Химическая промывка
Метод применяется для очистки всех типов ПТО, и эффективен при незначительном загрязнении рабочей зоны теплообменника. Для проведения химической очистки не требуется разборка агрегата, что позволяет значительно сократить время проведения работ. Кроме того, для очистки паяных и сварных теплообменников другие методы не применяются.
Химическая промывка теплообменного оборудования производится в следующей последовательности:
- специальный моющий раствор вводится в рабочую зону теплообменника, где под воздействием химически активных реагентов происходит интенсивное разрушение накипи и других отложений;
- обеспечение циркуляции моющего средства по первичному и вторичному контурам ТО;
- промывка теплообменных каналов водой;
- слив чистящих препаратов из теплообменника.
В процессе проведения химической очистки особое внимание следует уделить окончательной промывке агрегата, поскольку химически активные компоненты моющих средств могут разрушить уплотнения
Наиболее распространенные виды загрязнений и способы очистки
В зависимости от используемых рабочих сред, температурных режимов и давления в системе, природа загрязнений может быть различной, поэтому для эффективной очистки необходимо правильно подобрать моющее средство:
- очистка от накипи и металлических отложений используются растворы фосфорной, азотной или лимонной кислоты;
- для удаления оксида железа подойдет ингибированная минеральная кислота;
- органические отложения интенсивно разрушаются гидроксидом натрия, а минеральные – азотной кислотой;
- жировые загрязнения удаляют с помощью специальных органических растворителей.
Поскольку толщина теплообменных пластин составляет всего 0,4 – 1 мм, особое внимание следует уделять концентрации активных элементов в моющем составе. Превышение допустимой концентрации агрессивных компонентов может привести к разрушению пластин и уплотнительных прокладок
Широкое применение пластинчатых теплообменников в различных отраслях современной промышленности и коммунального хозяйства обусловлено высокой производительностью, компактными габаритными размерами, простотой монтажа и технического обслуживания. Еще одним преимуществом ПТО является оптимальное соотношение цена/качество.
Требования к прокладкам
К аппаратам с пластинами предъявлены довольно жесткие требования касательно герметичности оборудования, именно по этой причине на сегодняшний день прокладки начали изготавливать из полимеров. К примеру, этиленпропилен может с легкостью эксплуатироваться в условиях повышенных температур — и пара, и жидкости. Однако довольно быстро начинает разрушаться в среде, которая содержит большое количество жиров и кислот.
Теплообменники различаются количеством пластин
Крепление уплотнителей к пластинам производится чаще всего с помощью клипсовых замков, в редких случаях — с помощью клеящего состава.
Производим расчёт
Формула, по которой считается теплоотдача следующая:
Q = K*F*dT, где
- К – коэффициент теплопроводности стали;
- Q – коэффициент теплоотдачи, Вт;
- F – площадь участка трубы, для которого производится расчёт, м 2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.
Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.
dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.
dT = (0,5*(T 1 + T 2)) — T к
Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.
Разновидности теплообменников для ГВС-систем
Рассмотрим несколько примеров схем. Прокладки могут быть как стальными, так и резиновыми. Очень проста в реализации и относительно недорогая.
Медные трубы
Какие медные трубы для отопления лучше – выбор и монтаж
Основные особенности конструкции
Для изготовления пластин применяются сплавы, характеризующиеся стойкостью к образованию коррозии. Это обеспечивает им должный уровень надежности и гарантирует долговечность.
В собранном виде теплообменник отличается довольно плотным размещением пластин. Благодаря этому образовываются щелевые каналы. Их герметичность достигается за счет применения дополнительных контурных прокладок из резины.
На всех пластинах присутствуют отверстия в количестве четырех штук. Два из них обеспечивают нагревание сред. Оставшаяся пара изолируется. Данная мера исключает недопустимое смешивание жидкостей.
Особенностью работы пластинчатых теплообменников являются довольно небольшие гидравлические сопротивления. Кроме того, следует отметить тот факт, что на поверхности пластин практически не образуется накипь.
При условии размещения дополнительных патрубков на прижимной плите, реализуется возможность осуществления многократного теплообмена сред. Подобный подход актуален в ситуациях, когда речь идет о незначительной разнице в температуре двух сред, а также при условии ощутимого отличия в их расходе.
Оборудование для промывки теплообменников
Механизмы теплопередачи в расчете теплообменников
Теплообмен осуществляется посредством трех основных видов теплопередачи. Это конвекция, теплопроводность и излучение.
При теплообменных процессах, которые протекают по принципам механизма теплопроводности передача тепла происходит как перенос энергии упругих колебаний молекул и атомов. Данная энергия переходит от одних атомов к другим в направлении уменьшения.
При проведении расчетов параметров передачи тепла по принципу теплопроводности используется закон Фурье:.
Для вычисления количества тепла используются данные о времени прохождения потока, площади поверхности, градиенте температуры, а также о коэффициенте теплопроводности. Под градиентом температуры понимается ее изменение в направлении теплопередачи на одну единицу длины.
Под коэффициентом теплопроводности понимается скорость теплообмена, то есть то количество тепла, которое проходит через одну единицу поверхности в единицу времени.
При любых тепловых расчетах учитывается, что самый большой коэффициент теплопроводности имеют металлы. Различные твердые тела имеют гораздо меньший коэффициент. А у жидкостей этот показатель, как правило, ниже, чем у любого из твердых тел.
При расчете теплообменников, где передача тепла от одной среды к другой идет через стенку, также используется уравнение Фурье для получения данных о количестве передаваемого тепла. Оно вычисляется как количество тепла, которое проходит через плоскость с бесконечно малой толщиной:.
Если проинтегрировать показатели температурных изменений по толщине стенки, получится
Исход из этого получается, что температура внутри стенки падает по закону прямой линии.
Конвекционный механизм передачи тепла: расчеты
Еще один механизм передачи тепла – конвекция. Это передача тепла объемами среды посредством их взаимного перемещения. При этом передача тепла от среды к стенке и наоборот, от стенке к рабочей среде называется теплоотдачей. Чтобы определить количество тепла, которое передается, используется закон Ньютона
В данной формуле a — это коэффициент теплоотдачи. При турбулентном движении рабочей среды этот коэффициент зависит от многих дополнительных величин:
- физических параметров текучей среды, в частности теплоемкости, теплопроводности, плотности, вязкости;
- условий омывания газом или жидкостью теплоотдающей поверхности, в частности скорости текучей среды, ее направления;
- пространственных условий, которые ограничивают поток (длина, диаметр, форма поверхности, ее шероховатости).
Следовательно, коэффициент теплоотдачи — функция многих величин, что показано в формуле
Метод анализа размерностей позволяет вывести функциональную связь критериев подобия, которые характеризуют теплоотдачу при турбулентном характере движения потока в гладких, прямых и длинных трубах.
Это вычисляется по формуле .
Коэффициент теплоотдачи в расчете теплообменников
В химической технологии нередко встречаются случаи обмена тепловой энергией между двумя текучими средами через разделяющую стенку. Теплообменный процесс проходит три стадии. Тепловой поток для установившегося процесса остается неизменным.
Проводится расчет теплового потока, проходящего от первой рабочей среды к стенке, затем через стенку теплопередающей поверхности и затем от стенки ко второй рабочей среде.
Соответственно для проведения расчетов используется три формулы:
В результате совместного решения уравнений получаем
Величина
и есть коэффициент теплопередачи.
Расчет средней разности температур
Когда при помощи теплового баланса определено необходимое количество тепла, необходимо провести расчет поверхности теплообмена (F).
При расчете необходимой теплообменной поверхности используется то же уравнение, что и при предыдущих расчетах:
В большинстве случаев температура рабочих сред будет меняться в процессе протекания теплообменных процессов. Значит вдоль теплообменной поверхности будет меняться разность температур. Поэтому проводится расчет средней разности температур. А в связи с тем, что изменение температур не линейно, рассчитывают логарифмическую разность. В отличие от прямоточного потока, при противоточном движении рабочих сред необходимая площадь теплообменной поверхности должна быть меньше. Если в одном и том же ходу теплообменника используется и прямоточный, и противоточный потоки, разность температур определяется, исходя из соотношения.
Применение КТТ. DIY-сценарий
Типовой сценарий, описанный выше, характерен для относительно больших заказчиков. Моделирование и опытные образцы могут стоить вполне заметных денег. Но есть и второй путь.
Кроме заказных разработок в ассортименте нашей компании есть так называемые “стандартные КТТ”. Это набор контурных тепловых труб нескольких типовых конфигураций. Они обычно есть в наличии и относительно недорого их можно приобрести поштучно для своих экспериментов.
Понимая правила работы с КТТ вполне реально на базе таких стандартных труб сделать самостоятельно систему охлаждения для своего малосерийного (или вообще штучного) изделия.
Посмотреть доступные к приобретению варианты стандартных КТТ можно у нас на сайте. А понять основные правила работы с ними можно, посмотрев наш мини-сериал в заключительной части этой статьи.
Электрическое отопление
Если в вашем случае схемы с использованием газовых котлов недоступны, тогда вы сможете использовать в качестве теплоносителя электричество. Существует большое количество вариантов создания отопления. Например, можно изготовить теплый пол, который приобретают готовыми матами и устанавливают их в процессе укладки пола.
Электрический теплый пол
Можно использовать и электрический водяной бойлер. От него прокладываются металлопластиковые трубы Ø16 или Ø20 см. Монтируются они на теплоизоляционный слой. Что касается самой схемы, то здесь можно выбрать комбинированную или спиральную.
Водяной теплый пол
Трубы закрепляются на специальную сетку при помощи креплений. Как только вся система готова и все трубы проложены, следует осуществить ее проверку. Делать это можно двумя методами. Например, можно под давлением залить воду. Если обнаружится течь, тогда следует ее сразу устранить. Другой вариант проще, для этого в систему закачивается воздух. На месте утечки воздух будет при выходе шуметь, и вы обнаружите утечку.
2.1 Типы теплообменных аппаратов
Теплообменным
аппаратом (теплообменником) называется
устройство, в котором осуществляется
теплообмен между двумя или несколькими
теплоносителями.
По принципу действия
теплообменники подразделяются на
поверхностные, контактные и с внутренним
источником теплоты (например, реакторы
атомных электростанций). Поверхностные
теплообменники делятся на рекуперативные
и регенеративные, а контактные – на
смесительные и барботажные.
В рекуперативных
теплообменниках теплоносители непрерывно
омывают разделяющую стенку (поверхность
теплообмена) с двух сторон и обмениваются
при этом теплотой. В рекуперативном
трубчатом теплообменнике один из
теплоносителей протекает внутри труб,
а второй омывает их наружные поверхности.
В рекуперативных
теплообменниках движение жидкости
осуществляется по трем основным схемам
или их сочетаниям.
Конструктивно
рекуперативные теплообменные аппараты
могут выполняться с пластинчатой и
трубчатой (рис. 1 и 2) поверхностями
теплообмена.
В регенеративных
теплообменниках (регенераторах) одна
и та же поверхность поочередно омывается
то горячим, то холодным теплоносителем.
При протекании горячего теплоносителя
поверхность регенератора, воспринимая
теплоту от этой жидкости, нагревается,
а при протекании холодного теплоносителя
поверхность регенератора, отдавая
аккумулированную теплоту холодному
теплоносителю, охлаждается.
В смесительных
теплообменниках передача теплоты от
горячего к холодному теплоносителю
происходит при непосредственном контакте
и смешении обоих теплоносителей.
Смесительный теплообменник целесообразно
использовать для теплоносителей, которые
либо легко разделить после смешения
(например, вода и воздух), либо перемешать
(например, пар и вода).
Рис.
1. Схема четырехсекционного теплообменного
аппарата
Рис.
2. Рекуперативный теплообменник с
трубчатой поверхностью теплообмена
(противоток)
Теплообменные
аппараты могут иметь самое разнообразное
назначение – паровые котлы, конденсаторы,
пароперегреватели, воздухонагреватели,
радиаторы и т.д. Теплообменные аппараты
в большинстве случаев значительно
отличаются друг от друга как по своим
формам и размерам, так и по применяемым
в них рабочим телам. Несмотря на большое
разнообразие теплообменных аппаратов,
основные положения теплового расчета
для них остаются общими.