Принцип работы кожухотрубчатого теплообменника, его преимущества и недостатки

Содержание:

Принцип работы теплообменника

Во время осуществления теплообмена движение жидкостей происходит по направлению друг к другу. Наличие специального элемента из стали или дополнительного резинового уплотнения позволяет предотвратить смешение жидкостей в тех местах, где существует возможность протекания.

В зависимости от того, в каких именно условиях планируется эксплуатация конкретного теплообменника, количество пластин, а также способ обработки их поверхности, могут отличаться. Это относится и к применяемым расходным материалам.

Так, производители предлагают не только изделия из доступной нержавеющей стали, но и модели, выполненные из современных сплавов, устойчивые к длительному воздействию агрессивных сред.

Эксплуатация трубчатого теплообменника

Кожухотрубный теплообменник является устройством, которое характеризуется высокой продолжительностью срока службы и хорошими параметрами эксплуатации. Однако, как и любому другому устройству, для качественной и долговременной работы ему необходимо плановое обслуживание. Поскольку в большинстве случаев кожухотрубные теплообменники работают с жидкостью, которая не прошла предварительную очистку, трубки агрегата рано или поздно засоряются и на них образуется осадок и создается препятствие для свободного протекания рабочей жидкости.

Чтобы эффективность работы оборудования не снижалась и не произошла поломка кожухотрубного агрегата, следует систематически проводить его чистку и промывку.

Благодаря этому он сможет осуществлять качественную работу на протяжении длительного времени. По истечению срока действия прибора, рекомендуется осуществить замену его на новый.

Если возникла потребность в ремонте трубчатого теплообменника, то первоначально необходимо произвести диагностику устройства. Это позволит выявить основные проблемы и определит объем предстоящей работы. Самая слабая его часть — это трубки, и, чаще всего, основным поводом ремонта является повреждение трубчатки.

Для диагностики кожухотрубного теплообменника используется метод гидравлических испытаний.

В сложившейся ситуации необходимо произвести замену трубок, а это трудоемкий процесс. Необходимо заглушить вышедшие из строя элементы, в свою очередь это сокращает площадь теплообменной поверхности. Осуществляя ремонтные работы, обязательно нужно учитывать тот факт, что любое, даже малейшее вмешательство, может стать причиной уменьшения теплообмена.

Теперь вы знаете, как устроен кожухотрубный теплообменник, какие есть у него разновидности и особенности.

Эффективность кожухотрубного теплообменника, технические характеристики конкретного агрегата зависят от целого набора параметров. Все эти параметры так или иначе взаимосвязаны и рассчитываются в совокупности.

Схемы движения потоков в пластинчатом теплообменнике

Однопроходная схема

Простейшие схемы пластинчатых теплообменников – это те, в которых обе жидкости делают только один проход, поэтому нет никакого изменения направления потоков. Они известны как однопроходные схемы 1-1, и есть два типа: противоточные и параллельные. Большим преимуществом однопроходной компоновки является то, что входы и выходы жидкости могут быть установлены в неподвижной пластине, что позволяет легко открывать оборудование для технического обслуживания и очистки, не нарушая работу трубопроводов. Это наиболее широко используемая однопроходная конструкция, известная как U-образная компоновка. Существует также однопроходная Z-схема, в которой имеется вход и выход жидкости через обе торцевые пластины (рисунок 9).

Рисунок 9 – Механизм работы однопроходного ПТ: а) U-образное расположение и Б) Z-образное расположение.

Противоточный поток, где потоки текут в противоположных направлениях, обычно предпочтительнее из-за достижения более высокой тепловой эффективности, по сравнению с параллельным потоком, где потоки текут в одном направлении.

Многопроходная схема

Многопроходные устройства могут также использоваться для повышения теплопередачи или скорости потока потоков и обычно требуются, когда существует существенная разница между расходами потоков (рисунок 10).

Рисунок 10 – Многопроходный пластинчатый теплообменник

Пластины ПТ могут обеспечивать вертикальный или диагональный поток, в зависимости от расположения прокладок. Для вертикального потока вход и выход данного потока расположены на одной стороне теплообменника, тогда как для диагонального потока они находятся на противоположных сторонах. Сборка пакета пластин включает чередование пластин “а” и “в” для соответствующих потоков. Монтаж пакета пластин в режиме вертикального потока требует только соответствующей конфигурации прокладок, поскольку устройства А и в эквивалентны (они поворачиваются на 180°, как показано на рисунке 11а). Это невозможно в случае диагонального потока, для которого требуются оба типа монтажных пластин (рисунок 11б). Плохое распределение потока с большей вероятностью происходит в массиве вертикального потока.

Рисунок 11 – (a) пластина с вертикальным потоком,  (б) пластина с диагональным потоком

Электрическое отопление

Если в вашем случае схемы с использованием газовых котлов недоступны, тогда вы сможете использовать в качестве теплоносителя электричество. Существует большое количество вариантов создания отопления. Например, можно изготовить теплый пол, который приобретают готовыми матами и устанавливают их в процессе укладки пола.

Электрический теплый пол

Можно использовать и электрический водяной бойлер. От него прокладываются металлопластиковые трубы Ø16 или Ø20 см. Монтируются они на теплоизоляционный слой. Что касается самой схемы, то здесь можно выбрать комбинированную или спиральную.

Водяной теплый пол

Трубы закрепляются на специальную сетку при помощи креплений. Как только вся система готова и все трубы проложены, следует осуществить ее проверку. Делать это можно двумя методами. Например, можно под давлением залить воду. Если обнаружится течь, тогда следует ее сразу устранить. Другой вариант проще, для этого в систему закачивается воздух. На месте утечки воздух будет при выходе шуметь, и вы обнаружите утечку.

Область применения

Основные потребители кожухотрубных теплообменников с бытовой точки зрения – жилищно-коммунальные хозяйства. Они применяют агрегаты в составе инженерных сетей. Широко используют изделия теплосети для поставки в жилые дома горячей воды. Если есть возможность, имеет смысл сделать индивидуальный тепловой пункт, он значительно эффективнее, чем централизованная магистраль.

Кожухотрубные устройства нашли применение в нефтедобывающей отрасли, химической и газовой промышленности,в сфере теплоэнергетики

Не обошли их своим вниманием пивное и пищевое производство. Но больше всего востребованы теплообменники в как конденсаторы, утилизаторы тепла отработанных газов и подогреватели

ООО «НЗТО» выпускает изделия, которые характеризуются малой чувствительностью к перепадам температур и давления, не имеют ограничений по рабочим средам. Мы изготавливаем продукцию заданных размеров, горизонтальной или вертикальной ориентации, разных диапазонов рабочего давления и материалов.

Преимущества и недостатки

Сегодня кожухотрубные теплообменники пользуются спросом у потребителей и не теряют своих позиций на рынке. Это обусловлено немалым количеством достоинств, которыми обладают эти устройства:

  1. Высокая стойкость к гидроударам. Это помогает им легко переносить перепады давления и выдерживать серьезные нагрузки.
  2. Не нуждаются в чистой среде. Это значит, что они могут работать с некачественной жидкостью, не прошедшей предварительной очистки, в отличие от множества других видов теплообменников, которые способны работать исключительно в не загрязненных средах.
  3. Высокая эффективность.
  4. Износостойкость.
  5. Долговечность. При должном уходе кожухотрубчатые агрегаты будут работать на протяжении многих лет.
  6. Безопасность использования.
  7. Ремонтопригодность.
  8. Работа в агрессивной среде.

Учитывая вышеизложенные преимущества, можно утверждать об их надежности, высокой эффективности и долговечности.

Кожухотрубные теплообменники в промышленности

Несмотря на большое количество отмеченных преимуществ кожухотрубных теплообменников, данные устройства имеют и ряд недостатков:

  • габаритность и значительный вес: для их размещения необходимо помещение значительных размеров, что не всегда является возможным;
  • высокая металлоемкость : это является основной причиной их высокой цены.

Использование разного вида рабочих сред

Грамотно подобранный теплоноситель способен значительно повысить производительность работы.

Водяной пар

Одним из широко распространенных теплоносителей является перегретый (насыщенный) водяной пар. Он обладает рядом достоинств: высокая интенсивность теплоотдачи, легкое транспортирование по трубам, возможность регулировать температуру. Чаще всего данный вид теплоносителя применяют в технологических процессах с многократным испарением, когда выпариваемый продукт направляется в подогреватели или другие выпарные установки.

Горячая жидкость

Не менее распространены в качестве агентов, циркулирующих по теплообменнику – горячие жидкости и вода. Они отличаются менее интенсивным подогревом и стабильно снижающейся температурой носителя.

Для пара и воды характерен один значительный недостаток: с повышением температуры происходит резкий рост давления в системе. На пищевых производствах аппараты не могут работать при температуре выше 160°С.

Масляный раствор

Масляный обогрев целесообразен в консервной промышленности, он позволяет эксплуатировать теплообменник при 200°С.

Горячий воздух и газ

Газ и горячий воздух (максимальная температура 300-1000°С) используются в сушильных устройствах и печах. Газообразные вещества имеют много недостатков: их трудно транспортировать и контролировать по температурному параметру, они обладают низким коэффициентом теплообмена, а топочные газы сильно загрязняют поверхность теплообменника.

Широкие возможности кожухотрубного теплообменника

  1. Давление в трубках может достигать разных значений, от вакуума до наивысших;
  2. Можно достичь необходимого условия по термическим напряжениям, при этом цена устройства существенно не поменяется;
  3. Размеры системы тоже могут быть различными: от бытового теплообменника в ванную комнату до промышленного площадью 5000 кв. м.;
  4. Нет необходимости предварительно очищать рабочую среду;
  5. Для создания сердцевины используют разные материалы, в зависимости от затрат на производство. Однако все они соответствуют требованиям температуры, давления и устойчивости к коррозии;
  6. Отдельный участок труб можно извлечь для чистки или ремонта.

Есть ли у конструкции недостатки? Не без них: кожухотрубчатый теплообменник весьма громоздкий. Из-за своих габаритов он нередко требует отдельного технического помещения. Ввиду большой металлоемкости стоимость изготовления такого устройства тоже велика.

Основные виды теплообменных аппаратов

Согласно формам строения теплообменники разделяют на две большие группы – пластинчатые и трубчатые. Первые получили наибольшее распространение в пищевой промышленности, горячем водоснабжении и отоплении частных домов. Они представляют собой набор пластин с рифленой поверхностью и каналами, соединенные в единый аппарат с помощью прокладок и стяжек. Патрубки, по которым теплоноситель и теплоприемник поступают в устройство и выходят из него чаще всего располагаются на передней и задней поверхностях плит, что обеспечивает легкость эксплуатации.

Согласно методу соединения виды теплообменников пластинчатого типа разделяются на группы:

  • Разборные – герметизацию которых обеспечивают резиновые уплотнители. Их главными преимуществами являются легкость установки и эксплуатационного обслуживания, благодаря чему их активно используют на заводах и в домах. Недостатком же следует считать необходимость регулярной замены прокладок, а также отсутствие возможности работы с агрессивными средами.
  • Паянные теплообменники имеют более прочную конструкцию. Их изготавливают сугубо из высококачественной нержавеющей стали, а процесс пайки производится при создании условий вакуума. Они редко требуют эксплуатационного ремонта и способны эффективно работать с кислотами и щелочами, что сделало их неотъемлемой частью химической промышленности.
  • Сварные теплообменники, изготовленные из стали, титана или никелевых сплавов, используются в самых экстремальных условиях высокого давления и температур.

Трубчатые теплообменники применяются преимущественно в производстве, а также в качестве конструктивного элемента бытовой техники – холодильников и кондиционеров. Их общим преимуществом является устойчивость к суровым условиям работы: высоким и низким температурам, агрессивным средам и создающемуся внутри давлению.

Наиболее простой моделью трубчатого теплообменника является конструкция «труба в трубе», при которой по внутреннему контуру проходит теплоноситель, а по внешнему – теплоприемник. Возможность вариации диаметра труб с целью обеспечения оптимальной скорости движения сред и легкость обслуживания послужили главным фактором применения этой модели. Но ее внушительные габариты при малой эффективности нагрева заставили конструкторов искать иные варианты конструкций.

Ныне виды теплообменных аппаратов трубчатого типа включают достаточно большой ассортимент конструкций, используемых во всех отраслях промышленности:

  • Кожухотрубные теплообменники представляют собой множество труб малого сечения, объединенных одним кожухом. Соединенные в решетку, они представляют собой компактное устройство с высокой эффективностью работы. При необходимости увеличения объема жидкостей и скорости кожухотрубные теплообменники объединяют между собой в секционные конструкции.
  • Витые устройства – система труб, предназначенных для теплоносителя и теплоприемника, плотно закрученные вокруг сердечника. Компактные и высокопродуктивные аппараты.
  • Спиральные теплообменники имеют аналогичную конструкцию, с той лишь разницей, что оба смежных канала обвивают центральную перегородку устройства. Их главная функция – нагрев и охлаждение вязких, тягучих жидкостей.
  • Оросительные устройства представляют собой спираль с желобом, на который стекает жидкость. Такая конструкция теплообменника актуальна для создания систем вентиляции и кондиционирования, обеспечения работы морозильных и охладительных камер.

Наибольшую распространенность во всех сферах промышленности и жизни людей ныне занимают пластинчатые теплообменники, которые за счет рифленой поверхности контуров обеспечивают максимальное прилегание и циркуляцию сред. Такая конструкция обеспечивает наивысшую эффективность при компактных размерах и простоту технического обслуживания.

Виды пластинчатых теплообменных аппаратов и их применение

По способу соединения теплообменных пластин теплообменник может быть:

  • разборной;
  • паяный;
  • полусварной;
  • сварной.

Конструкция и принцип работы разборных пластинчатых ТО были описаны выше. Рассмотрим более подробно особенности конструкции и область применения паяных, полусварных и сварных теплообменников.

Паяный пластинчатый теплообменник

Агрегат широко используется для:

  • нагрева и охлаждения рабочих сред;
  • испарения;
  • конденсации;
  • утилизации и рекуперации тепловой энергии.

Теплообменные пластины ППТО изготавливаются из нержавеющей стали. Сборка пакета осуществляется аналогично с разборными теплообменниками, после чего производится пайка медным или никелевым припоем, в зависимости от агрессивности рабочей среды: для более агрессивных сред используется никель.

К наиболее существенным преимуществам паяных ПТО можно отнести:

  • высокую надежность;
  • возможность работы в широком температурном диапазоне;
  • легкость и небольшие габариты;
  • надежность конструкции;
  • простоту монтажа и технического обслуживания;
  • доступную стоимость.

Особенно хорошо паяные ПТО зарекомендовали себя в холодильных и замкнутых отопительных системах.

Полусварные пластинчатые теплообменники

Главной конструктивной особенностью полусварных теплообменников является попарное сваривание штампованных пластин, в результате чего формируется отдельный герметичный модуль. Сборка ПСПТО осуществляется также, как и разборного теплообменника, различие состоит в том, что вместо отдельных пластин используются готовые сварные модули.

Между первичными и вторичными модулями устанавливаются прокладки из термостойкой резины. Отсутствие внутренних прокладок позволяет существенно увеличить рабочее давление в системе и температуру рабочей среды.

Благодаря высоким эксплуатационным характеристикам ПСПТО получили широкое распространение следующих областях:

  • в системах вентиляции и кондиционирования;
  • в химическом и фармацевтическом производстве;
  • в пищевой промышленности;
  • в системах рекуперации;
  • в отопительных системах;
  • в системах централизованной подачи горячей воды.

Среди наиболее значимых преимуществ данной конструкции можно выделить:

  • широкий диапазон рабочих температур;
  • отсутствие герметизирующих прокладок;
  • инертность к агрессивным рабочим средам;
  • простоту монтажа и технического обслуживания.

В отличии от сборных ПТО, полусварные агрегаты практически полностью исключают возможность неправильной сборки.

Сварные пластинчатые теплообменники

Отсутствие уплотнений является главной особенностью конструкции сварных теплообменных аппаратов. Гофрированные пластины сварены в один блок, в котором рабочая среда протекает по внутренним каналам, а нагреваемая – по внешним.

Применяются СПТО при работе с агрессивными средами при повышенных температурах и высоком давлении рабочих сред.

Конструктивные особенности сварных теплообменников обеспечивают следующие преимущества:

  • компактность;
  • высокий коэффициент теплопередачи;
  • незначительные теплопотери;
  • простоту технического обслуживания.

Отсутствие уплотнений в сварных ПТО обеспечивает полную герметичность рабочих каналов, что позволяет работать в экстремальных условиях.

Взаимные связи

К наиболее важным характеристикам можно отнести интенсивность процесса теплообмена, тепловую мощность теплообменника – количество теплоты, которое он способен передать (забрать) за единицу времени. Она традиционно измеряется в гигакалориях (Гкал) или киловаттах (кВт) в час и, в первую очередь, связана с разницей температур теплоносителей – теплоотдающей и тепловоспринимающей сред – на входе теплообменного аппарата. Чем больше разница, тем больше энергии один теплоноситель теоретически сможет передать другому.

На практике, кроме температуры, определяющее значение имеют и другие физические величины.

1. Площадь поверхности теплообмена. В случае с кожухотрубным теплообменником она равна совокупной площади внешней поверхности всех труб трубного пучка. Увеличение площади ведёт к увеличению интенсивности теплоотдачи.

Сделать это можно тремя способами:

  • скомпоновав пучок из максимально возможного количества труб (ведёт к увеличению диаметра кожуха теплообменника);
  • увеличив длину труб и, соответственно общую длину всего агрегата;
  • увеличив площадь поверхности каждой трубы, сделав её «гофрированной», волнообразной.

2. Теплопроводность и теплоёмкость. Поскольку тепловая энергия передаётся от одной среды к другой опосредовано, через промежуточный агент – материал стенок труб – для лучшей теплоотдачи они должны быть изготовлены из сплава, быстро и с минимальными потерями пропускающими тепло (высокая теплопроводность) и не накапливающего, не задерживающего её (низкая теплоёмкость).

Одним из вариантов увеличить теплопроводность и одновременно снизить теплоёмкость является уменьшение толщины стенок труб. Однако, при утончении стенок снижается способность труб выдерживать давление теплопроводящей среды, а от давления в системе зависит ещё один параметр – скорость прохождения теплоносителя.

3. Время и вектор контакта. Они напрямую зависят от скорости и направления прохождения теплоносителей сквозь обменник. Здесь есть нюанс:

  • с одной стороны, скорость должна быть достаточно медленной, чтобы греющая среда успела отдать тепло нагреваемой;
  • с другой стороны, чем выше скорость, тем больше тепловой энергии в общей сложности пройдёт через обменник и, соответственно, увеличится общая тепловая нагрузка.
  • однонаправленное движение теплоносителей («прямоток») менее эффективно, нежели встречное движение («противоток»);
  • перпендикулярное движение («перекрёстный ток») для кожухотрубных теплообменных аппаратов является наиболее эффективным.

Для оптимизации времени и вектора контакта теплоносителей в устройстве кожухотрубного теплообменника применяются различные технические ухищрения:

  • поперечные перегородки в кожухе, чтобы внешний теплоноситель омывал трубы не прямолинейным прямоточным или противоточным, а зигзагообразным перекрёстным движением, обеспечивая нужный вектор контакта;
  • продольные перегородки в распределительных камерах (для двух-, четырёхходовых и т.д. теплообменников), чтобы внутренний теплоноситель проходил вдоль теплообменника дважды (четырежды и т.д.), увеличивая тем самым время контакта.

Компактность пластинчатых теплообменников.

Первое
и одно из основополагающих преимуществ
пластинчатого аппарата заключается в
его компактности. Кожухотрубный
теплообменник занимает приблизительно
в 6-8 раз больше места, чем аналогичный
ему по мощности пластинчатый. Компактность
пластинчатых аппаратов определяет
следующее:


значительную экономию пространства
для установки пластинчатого теплообменника,
что бывает очень важным при отсутствии
места для установки аппарата;


очень малые тепловые потери в окружающую
среду с поверхности пластинчатого
теплообменника без дополнительной
теплоизоляции;


сравнительно низкую стоимость пластинчатых
аппаратов при очень высоком качестве
используемых материалов;


значительное снижение затрат на установку
(основание) и обвязку пластинчатых
аппаратов.

Использование теплообменных устройств в промышленности

Теплообменники имеют разнообразное технологическое значение. Можно разделить все модели на две большие категории:

  • теплообменные устройства, в которых основной процесс – передача тепла;
  • теплообменные устройства, в которых охлаждение, конденсация, пастеризация и иные процессы – основные, а передача тепловой энергии выступает в качестве сопутствующего компонента.

По основному применению модели классифицируют на группы:

  • конденсаторы;
  • подогреватели;
  • холодильники;
  • испарители.

Их применение широко востребовано в разных отраслях промышленности. Внедрение в технологический процесс прибора позволяет значительно ускорить работу и увеличить эффективность.

Преимущества :

  • повышенная стойкость к гидроударам, что выгодно отличает устройства от аналогов;

  • способность функционировать в условиях, далеких от идеальных, с использованием сильно загрязненных веществ;

  • простота эксплуатации, механическая чистка и техническое обслуживание не представляют трудностей для персонала;

  • хорошая ремонтопригодность.

Последнее качество особенно ценно, если сравнивать кожухотрубчатый аппарат с пластинчатым. Пластинчатые установки имеют в конструкции сложные прокладки и чаще подвержены засорению ввиду небольшого поперечного сечения проточных каналов. После каждой чистки аппарата уплотнения меняют, что выходит довольно дорого. Форма прокладок кожухотрубных теплообменников более простая, это облегчает замену. По количеству их нужно меньше.

Кроме того, пластинчатые варианты не пригодны к применению в зонах с жесткой водой или там, где не исключены механические частицы. Кожухотрубные изделия не настолько требовательны, они могут работать даже с морской водой и агрессивными жидкостями.

Технические характеристики

Как правило, технические характеристики пластинчатого теплообменника определяются количеством пластин и способом их соединения. Ниже приведены технические характеристики разборных, паяных, полусварных и сварных пластинчатых теплообменников:

Рабочие параметры

Единицы измерения

Разборные

Паяные

Полусварные

Сварные

КПД

%

95

90

85

85

Максимальная температура рабочей среды

С

200

220

350

900

Максимальное давление рабочей среды

бар

25

25

55

100

Максимальная мощность

МВт

75

5

75

100

Средний период эксплуатации

лет

20

20

10 — 15

10 — 15

Исходя из приведенных в таблице параметров определяют необходимую модель теплообменника. Помимо этих характеристик, следует учесть тот факт, что полусварные и сварные теплообменники больше приспособлены к работе с агрессивными рабочими средами.

Промывка пластинчатого теплообменника

Функциональность и работоспособность агрегата в значительной степени зависит от качественной и своевременной промывки. Частота промывки обусловлена интенсивностью работы и особенностями технологических процессов.

Методика проведения очистных работ

Образование накипи в теплообменных каналах является наиболее распространенным видом загрязнения ПТО, ведущим к снижению интенсивности теплообмена уменьшению общего КПД установки. Удаление накипи производится с помощью химической промывки. Если помимо накипи присутствуют другие виды загрязнения, необходимо произвести механическую очистку пластин теплообменника.

Химическая промывка

Метод применяется для очистки всех типов ПТО, и эффективен при незначительном загрязнении рабочей зоны теплообменника. Для проведения химической очистки не требуется разборка агрегата, что позволяет значительно сократить время проведения работ. Кроме того, для очистки паяных и сварных теплообменников другие методы не применяются.

Химическая промывка теплообменного оборудования производится в следующей последовательности:

  1. специальный моющий раствор вводится в рабочую зону теплообменника, где под воздействием химически активных реагентов происходит интенсивное разрушение накипи и других отложений;
  2. обеспечение циркуляции моющего средства по первичному и вторичному контурам ТО;
  3. промывка теплообменных каналов водой;
  4. слив чистящих препаратов из теплообменника.

В процессе проведения химической очистки особое внимание следует уделить окончательной промывке агрегата, поскольку химически активные компоненты моющих средств могут разрушить уплотнения

Наиболее распространенные виды загрязнений и способы очистки

В зависимости от используемых рабочих сред, температурных режимов и давления в системе, природа загрязнений может быть различной, поэтому для эффективной очистки необходимо правильно подобрать моющее средство:

  • очистка от накипи и металлических отложений используются растворы фосфорной, азотной или лимонной кислоты;
  • для удаления оксида железа подойдет ингибированная минеральная кислота;
  • органические отложения интенсивно разрушаются гидроксидом натрия, а минеральные – азотной кислотой;
  • жировые загрязнения удаляют с помощью специальных органических растворителей.

Поскольку толщина теплообменных пластин составляет всего 0,4 – 1 мм, особое внимание следует уделять концентрации активных элементов в моющем составе. Превышение допустимой концентрации агрессивных компонентов может привести к разрушению пластин и уплотнительных прокладок

Широкое применение пластинчатых теплообменников в различных отраслях современной промышленности и коммунального хозяйства обусловлено высокой производительностью, компактными габаритными размерами, простотой монтажа и технического обслуживания. Еще одним преимуществом ПТО является оптимальное соотношение цена/качество.

Дата: 25 сентября 2020
Напишите комментарий

Adblock
detector