Содержание:
- 1 Быстродействие измерения
- 2 Как снять термопару с газовой колонки
- 3 Термопары: устройство и принцип работы простым языком, типы
- 4 Как укладывать наноизол
- 5 Как и в каких случаях ее можно восстановить
- 6 Схема подключения термопары
- 7 Спай термопары
- 8 Что это и для чего нужно?
- 9 Ремонт своими руками
- 10 Какие бывают термпопары ?
- 11 Тип K или ТХА. Материалы электродов: хромель-алюмель
- 12 Принцип действия
- 13 Точность термопар, производимых «ПК «Тесей».
Быстродействие измерения
Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.
Факторы, увеличивающие быстродействие:
- Правильная установка и расчет длины первичного преобразователя;
- При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
- Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
- Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
- Быстро движущаяся среда или среда с большей плотностью (жидкость).
Как снять термопару с газовой колонки
Для того чтобы была возможность оперативно отремонтировать газовую колонку своими руками и всегда быть с теплой водой, с учетом опыта длительной эксплуатации газовых колонок разных моделей, у меня под рукой всегда имеется набор запасных частей. Резиновые прокладки, трубки, тепловое реле и термопара в комплекте. Поэтому за полчаса термопара была заменена новой, и колонка опять стала исправно нагревать воду.
Термопара закреплена слева на общей планке с запальником и свечей с помощью гайки. Прежде чем отвинчивать гайку нужно немного отвинтить левый саморез, удерживающий планку, чтобы он не мешал поворачиваться гаечному ключу.
Далее гаечным рожковым ключом гайка откручивается вращением против часовой стрелки до полного схода с резьбы на корпусе термопары. После этого термопара легко выйдет вниз из планки.
На следующем шаге нужно с помощью рожкового ключа выкрутить винт-контакт из газо-водорегулирующего узла. Винт находится с противоположной стороны ручки регулировки подачи газа.
Останется только снять две клеммы с реле тепловой защиты, и термопара в комплекте с проводами будет снята с газовой колонки.
Установка новой термопары производится в обратном порядке, при этом желательно, чтобы токоведущие провода не касались как внутренних металлических частей газовой колонки, так и кожуха после его установки.
Термопары: устройство и принцип работы простым языком, типы
В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки.
Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений.
В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.
В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары.
Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.
Устройство и принцип действия
Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык.
Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай.
Схематически устройство изображено на рисунке 1.
Рис. 1. Схема строения термопары
Красным цветом выделено зону горячего спая, синим – холодный спай.
Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).
Рис. 2. Термопара с керамическими бусами
Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС.
Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает.
Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.
Рис. 3. Измерение напряжения на проводах ТП
Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки.
Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки.
Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар.
Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.
В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.
Рис. 4. Решение вопроса точности показаний термопар
На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.
Типы термопар и их характеристики
Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:
- ТПП13 – платинородий-платиновые (тип R);
- ТПП10 – платинородий-платиновые (тип S);
- ТПР – платинородий-платинродиевые (тип B);
- ТЖК – железо-константановые (тип J);
- ТМКн – медь-константановые (тип T);
- ТНН – нихросил-нисиловые (тип N);
- ТХА – хромель-алюмелевые (тип K);
- ТХКн – хромель-константановые (тип E);
- ТХК – хромель-копелевые (тип L);
- ТМК – медь-копелевые (тип M);
- ТСС – сильх-силиновые (тип I);
- ТВР – вольфрамрениевые (типы A-1 – A-3).
Как укладывать наноизол
Монтирование материала выполняется строго по стандартизированным правилам. С целью обеспечения защиты утеплителя пароизоляционный материал размещают во внутренней части помещения между обшивкой и теплоизоляционным слоем.
Как и в каких случаях ее можно восстановить
Термопара устроена таким образом, что любые повреждения или загрязнения могут снизить выдаваемое ею напряжение ниже критической отметки. Очень частой причиной неисправной работы является нагар или слой сажи на ее рабочей (нагреваемой) части. Чтобы восстановить термопару, достаточно почистить ее мягкой щеткой или ваткой и спиртом, не допуская при этом царапин и прочих повреждений. После очистки стоит заново произвести проверку напряжения следуя инструкции выше.
Также частой причиной являются окислившиеся контакты, их можно аккуратно обработать наждачкой-нулевкой. Если на термопаре присутствует глубокая черная вмятина или дыра вследствие прогорания, ее гарантировано необходимо заменить.
Схема подключения термопары
Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.
Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.
Спай термопары
В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.
Цепь термопары
Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.
Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.
Воздействие нагрева одного спая термопары
Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.
Холодный спай термопары
Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.
В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.
Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.
Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.
Цепь термопары с компенсирующим резистором
Рабочий спай термопары (горячий)
Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.
Рабочий спай и холодный спай
Что это и для чего нужно?
Приобретение термопары для газовой плиты – забота о безопасности своей семьи.
По сути – это датчик, регистрирующий температуру. Но только не окружающей среды, а пламени горелки плиты. Впрочем, разработчики не пытались следить за изменением температуры огня, а лишь за его наличием. Горит огонь, датчик нагрет, все работает нормально. Погас огонь, датчик остыл, отключается газ.
Покупка газовой плиты с термопарой не намного дороже, чем без нее, зато гарантирована профилактика утечки газа.
Все просто, эффективно и незатратно. Наличие опции незначительно влияет на цену модели. А безопасность такой плиты повышается.
В общих чертах термодатчик представляет собой небольших размеров цилиндр из спаянных вместе двух металлов. От него идут провода к электромагнитному клапану. Именно он и контролирует подачу газа. Работа системы построена на физических законах, о которых многие забыли сразу после школы.
Повторим физику
Устройство термопары основано на законах физики: закрытый контур из металлических проводников при нагревании производит электрический ток.
Первым эффект, легший в основу термопары, открыл немецкий физик Т. Зеебек. В своих опытах он установил, что закрытый контур из двух проводников различных металлов при нагревании образует электрический ток. При этом, чем больше нагревать спайку проводников, тем больший ток возникает.
Немецкий ученый Т. Зеебек первым обнаружил физическое явление, на котором основано действие термопары.
Один контакт контура нагревается и называется «горячим». Другой, «холодный» должен быть при более низкой температуре. С него и снимается показание температуры. Поскольку зависимость полученного тока от температуры нагревания строго линейна.
Маркировка термопар
Перед приобретением прибора важно разобраться в маркировке изделия, чтобы выбрать подходящий вариант.
Опытным путем были установлены пары металлов, использование которых наиболее эффективно. В зависимости от использованных металлов, прибор имеет свою маркировку. Зная ее и характеристики полученных спаев, можно выбрать подходящий для своих нужд датчик.
Различают следующие типы:
- K (ТХА/ХА) – никель с хромом или алюмелем. Распространенный, точный и недорогой с точностью +/- 1.10 С и диапазоном от -270 до 12600C.
- L (ТХК) – хромель с копелем. Основная черта – долговечность.
- J – железо с константаном. Второй по популярности с диапазоном от -210 до 7600C, не долговечен.
- T – медь с константаном. Прибор узкой специализации для особо низких температур.
- E – никель или хром с константаном. Высокоточный прибор для средних температур до 8700С.
- N – нихросил. Чрезвычайно точный, но дорогой прибор с диапазоном измерений до 3920C.
В продаже есть сплавы с добавлением усилителей. Они не так популярны, но имеют применение.
Где и как это используют?
В конфорках термопара для газовой плиты работает по простому принципу: есть или нет пламени.
Принцип действия термопары для газовой плиты не сложен, она реагирует на наличие и отсутствие пламени.
В духовке уже требуется контролировать температуру нагревания. Хозяйка устанавливает температуру и, в зависимости от того, насколько близка реальная температура в духовке, датчик регулирует интенсивность подачи газа через электромагнитный клапан.
Термопара для газового духового пара контролирует степень нагрева, а не только наличие пламени.
На том же принципе основана работа термодатчика газовых котлов и колонок. Контролируется температура нагревания воды, что дает возможность экономить потребление газа.
Термопара, установленная на газовый котел и регулирующая нагрев воды, сэкономит семейный бюджет.
Часто встречаются электронные термометры. С их помощью измеряют температуру в помещениях и у человека. Такие приборы гораздо безопаснее ртутных. В свое время они широко использовались в быту.
В промышленности широко применяется такое свойство термопары, как низкая инерционность. Что дает возможность измерять малую разность температур. Высоко ценится и применение датчиков в агрессивных средах и при высоких температурах, порядка 2 000 градусов.
Есть термопары, подходящие для измерения температуры в агрессивной среде. Они обладают устойчивой защитной арматурой.
Ремонт своими руками
Уметь починить любую вещь в доме – признак настоящего хозяина. Но в отношении газового оборудования нужно быть осторожным.
Ремонтом газового оборудования должен заниматься специалист, имеющий сертификат.
Но не все, что есть в таком приборе – газовое. Заменить конфорки, горелки, почистить детали – для этого не нужен мастер с допуском к работе. Прежде всего, нужно выявить неисправность.
Сбой в работе термопары для газовой плиты выглядит так. Газ горит только при нажатой кнопке. Стоит ее отпустить – пламя тухнет. Чтобы выяснить причину, нужно тщательно осмотреть как сам прибор, так и плиту в целом.
Работу по устранению неисправности термопары начинают с отключения подачи газа и осмотра техники.
- Разбираем газовую плиту.
- Снимаем с конфорки рассекатель.
- Убираем отражатель.
- Проверяем состояние термопары.
Частыми причинами поломки термопары являются ее загрязнение или повреждение датчика.
Возле газовой горелки находится два прибора. Один из них напоминает свечу зажигания в автомобиле. Это для розжига плиты. Второй – термопара. Причинами выхода ее из строя могут быть:
- загрязнение;
- повреждения;
- смена вида газа;
- поломка датчика или клапана.
Если загрязнен элемент термопары в газовой плите – его нужно как следует почистить. Термопара – два куска металла и чистка ее это пройти мелкой наждачной бумагой по поверхности.
Возможны повреждения проводки прибора. Потертости из-за неправильного монтажа, грызуны или домашние животные, возможны и другие причины повреждений.
После устранения неисправности газконтроля, необходимо тщательно проверить прибор.
После проверки и, при необходимости замены проводки, следует правильно подключить термопару. В противном случае «холодный» и «горячий» контакты контура окажутся не в противофазе. Все плюсовые провода подсоединяют к плюсовому выводу. Минусовые – к минусовому.
Правильно установленная термопара – залог безопасности при эксплуатации газового оборудования.
В зависимости от типа датчика цвет проводки меняется. В некоторых случаях изоляция может быть двойной и разного цвета. Но первичный слой будет всегда неизменным. В таблице представлены цвета основного изоляционного слоя.
Тип термопары | Цвет изоляции | |
Плюс | Минус | |
J | белый | красный |
K | желтый | красный |
T | голубой | красный |
E | малиновый | красный |
S | черный | красный |
R | черный | красный |
Нетрудно запомнить, что цвет провода с минусом всегда красный.
Какие бывают термпопары ?
По количеству чувствительных элементов термосопротивления бывают :
— с одним элементом (стандартное исполнение);
— с двумя чувствительными элементами.
Количество чувствительных элементов | Электрическая схема датчика |
Один | |
Два |
По исполнению коммутационной головки термопары бывают :
— с пластмассовой головкой (исполнение по умолчанию) ;
— с металлической головкой (при заказе в конце марки датчика добавляется код МГ) ;
— с увеличенной пластмассовой головкой (при заказе в марке к модели добавляется код Л ) ;
— с увеличенной металлической головкой (при заказе в марке к модели добавляется код Л и в конце марки датчика добавляется код МГ) .
Увеличенная головка применяется для встраивания в датчик нормирующего преобразователя тока НПТ, что превращает обычную термопару в преобразователь температуры с токовым выходом 0..20 или 4..20 мА.
Конструктивное | Стандартное исполнение | Увеличенное исполнение | Со встроенным НПТ-3
|
Пластмассовые | |||
Металлические головки | Для моделей 015-105, 185-215, 265 (поставка по умолчанию) | ||
Для моделей 115-165, 225, 275, 285, 295, 365 (поставка по умолчанию) | |||
Для моделей 115-165, 225 — с защелкой(поставка под заказ) | |||
Тип K или ТХА. Материалы электродов: хромель-алюмель
Термопары,
состоящие из хромеля и алюмели, относятся к датчикам общего назначения. Чаще
всего применяются в качестве самых разнообразных щупов. Они очень популярны
из-за своей невысокой стоимости и широкого диапазона измеряемых температур от
-270°С до +1372 °С (предел измерений будет зависеть от диаметра используемой
термоэлектродной проволоки). Нежелательно использование в атмосфере с
повышенным содержанием серы, так как она влияет на оба электрода.
Преобразователи
этого типа выпускает промышленная группа «Метран»
(«Rosemaunt»).
ТХА
Метран-231-1-3, ТХА
Метран-231-4-5 и ТХА
Метран-241
Метран-231-1-3 предусмотрен для измерения
температур жидких и газообразных химически неагрессивных сред, а также
агрессивных, которые не разрушают оболочку кабеля. Благодаря тому, что данные
термопреобразователи исполнены в кабельном виде, они не боятся изгибаний в ходе
укладки и монтажа, легко укладываются в труднодоступные места, а также прижимаются
к поверхностям, температуру которых необходимо измерить. Диапазон рабочих температур от -40°С до +1000°С
Метран-231-4-5 используются для измерения температур продуктов,
образующихся в процессе сгорания топлива (жидкого или газообразного) в
пульсирующем потоке.
ТХА
Метран-241 Разработаны
для замеров температуры различных малогабаритных подшипников, а также
поверхностей различных твердых тел, в том числе головок и корпусов термопластических
автоматов, различных червячных прессов для переработки резиновых смесей и
пластмасс. Диапазон рабочих температур
от -40°С до +400°С.
ТХАУ
Метран-271
Температурные преобразователи с унифицированным выходным сигналом используют
во взрывоопасных зонах, где существует вероятность образования газов, паров,
горючих жидкостей, образующих взрывоопасные смеси с воздухом категорий IIА, IIВ
и IIС, а также групп Т1-Т6 согласно ГОСТ Р 51330.11-99. Функционируют в
нейтральных и агрессивных средах, в которых защитная арматура не подвергается
коррозии. В головку датчика встроен измерительный преобразователь с
микропроцессором. Диапазон рабочих температур от 0°С до +1000°С
Термопары
ДТПK(ХА)-EХ
Компания
по разработке и производству КИПа «Овен» предлагает обычные и взрывозащищеные термопары
ДТПK(ХА)-EХ
Диапазон рабочих
температур от -40°С до +400°С.
Существует также ДТПК (ХА)-ЕХ с коммутационной
головкой (тип ХХ5). Этот прибор имеет диапазон рабочих температур обычных датчиков от -40°С до +1100°С,
для взрывозащищенных
-200°С до +1200°С. В промежутке от -160°С до +333°С
погрешность измерений может составлять до 2,5°С.
Термопреобразователи модификаций ДТПК(ХА) используются для постоянного измерения
температуры разнообразных рабочих сред, не агрессивных к материалу, из которого
изготовлен корпус датчика (газ, пар, вода, различные сыпучие материалы, а также
химические реагенты и прочие). Во взрывозащищенном исполнении применяются для
измерений температуры взрывоопасных смесей газов и паров, а также различных легковоспламеняющихся
и взрывчатых веществ.
Принцип действия
Термопары, установленные в газовых котлах, работают синхронно с электромагнитным впускающим клапаном, который по первому сигналу термопары немедленно прекращают подачу топлива. Работа термопары полностью основана на так называемом эффекте Зеебека, когда два проводника, изготовленные из разных материалов, контактируют друг с другом одной или несколькими точками, которые носят названия рабочей части и помещаются в область открытого пламени горелки. К противоположным концам этих металлических пластин приварены или припаяны проводники в защитной оболочке, второй конец которых удерживается зажимной гайкой в гнезде автоматического датчика. В момент, когда зажигается запальник и горелка котла, подача топлива осуществляется в ручном режиме, посредством нажатия на шток.
В результате газ подаётся к запальнику и он начинает гореть, нагревая своим пламенем термопару, расположенную рядом. По прошествии 15 секунд кнопка подачи топлива отпускается и подача топлива осуществляется благодаря тому, что термопара начала выработку напряжения, удерживающего шток топливного клапана. Среднее напряжение, которое способна выработать термопара, благодаря разности потенциалов на холодных окончаниях, находится в диапазоне 40-50 мВ. В некоторых высокотехнологичных моделях клапаны отличаются максимальной чувствительностью и удерживаются в открытом положении до тех пор, пока показатель напряжения на входе не опустится ниже 20 мВ.
Точность термопар, производимых «ПК «Тесей».
Градуировка термопары и классы допуска с обозначениями к1 и к2 соответствуют требованиям стандарта ASTM E 230, являющего более строгим к допустимым величинам отклонений от НСХ по сравнению с российским ГОСТ Р 8.585-2001 и международным МЭК 60584-1. Для датчиков КТХА и КТНН введен дополнительный повышенный класс точности с обозначением к0. Пределы допускаемых отклонений термо-э.д.с. от НСХ преобразователя, выраженные в температурном эквиваленте, в зависимости от диапазона рабочих температур не превышают значений, указанных в таблице ниже.
Тип датчика температуры | Диапазон измерений1, °С | Условное обозначение класса первичного преобразователя | Пределы допускаемых отклонений ТЭДС от НСХ, °С | |
от | до | |||
КТХА | – 40 | +250 | к0 | ± (0,5 + 0,002 · |t|) |
+250 | +1100 | ± 0,004 · |t| | ||
– 40 | +275 | к1 | ± 1,1 | |
+275 | +1100 | ± 0,004 · |t| | ||
– 40 | – 110 | к2 | ± 0,02 · |t| | |
– 110 | +293 | ± 2,2 | ||
+293 | +1300 | ± 0,0075 · |t| | ||
КТХК | – 40 | +375 | к1 | ± 1,5 |
+375 | +600 | ± 0,004 · |t| | ||
– 100 | +360 | к2 | ± 2,5 | |
+360 | +800 | ± (0,7 + 0,005 · |t|) | ||
КТНН | – 40 | +250 | к0 | ± (0,5 + 0,002 · |t|) |
+250 | +1100 | ± 0,004 · |t| | ||
– 40 | +275 | к1 | ± 1,1 | |
+275 | +1250 | ± 0,004 · |t| | ||
– 200 | – 110 | к2 | ± 0,02 · |t| | |
– 110 | +293 | ± 2,2 | ||
+293 | +1300 | ± 0,0075 · |t| | ||
КТЖК | – 40 | +275 | к1 | ± 1,1 |
+275 | +760 | ± 0,004 · |t| | ||
– 40 | +293 | к2 | ± 2,2 | |
+293 | 760 | ± 0,0075 · |t| | ||
КТМК | – 40 | +125 | к1 | ± 0,5 |
+125 | +370 | ± 0,004 · |t| | ||
– 100 | – 66 | к2 | ± 0,015 · |t| | |
– 66 | +135 | ± 1,0 | ||
+135 | +400 | ± 0,0075 · |t| |
Показатели надежности термопар.
Надежность – свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.
Примечание: надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств.
Термопары относятся к неремонтируемым и невосстанавливаемым изделиям.
Надежность термопар в условиях и режимах эксплуатации, установленных в ТУ 4211-002-10854341-2013, характеризуется следующими показателями:
- вероятность безотказной работы;
- назначенный срок службы;
- средний срок службы.
Показатели надежности термопар установлены в соответствии с ГОСТ 27883 и учитывают условия эксплуатации ДТ:
- температура применения;
- температура и влажность окружающей среды;
- вибрационные и ударные нагрузки;
- химическая агрессивность среды к материалу чехла датчика.
Назначенный срок службы равен интервалу между поверками (ИМП). При успешном прохождении термопарой периодической поверки, назначенный срок службы продлевается на величину следующего ИМП. В зависимости от наличия и уровня факторов, датчики температуры разделены на четыре группы эксплуатации
Показатели надежности и группы эксплуатации кабельных термопар
Группа условий эксплуатации | Вероятность безотказной работы | Интервал между поверками / Назначенный срок службы | Средний срок службы |
I | 0,95 за 40 000 часов | 5 лет | 10 лет |
II | 0,95 за 16 000 часов | 2 года | 4 года (6 лет) |
III | 0,95 за 8 000 часов | 1 год | 2 года |
IV | Не нормирована | Не нормирован | Не нормирован |
Отказом ДТ считают:
- превышение допустимой величины дрейфа при периодической или внеочередной поверках;
- разрушение защитной арматуры или нарушение целостности оболочки кабеля;
- обрыв или короткое замыкание цепи чувствительного элемента;
- снижение значения электрического сопротивления изоляции между цепью чувствительного элемента и металлической частью защитной арматуры или оболочкой кабеля ниже допустимых значений.
Средний срок службы указан с вероятностью безотказной работы 0,8 за указанный период
Увеличенный средний срок службы с вероятностью безотказной работы 0.6 за указанный период
Дата: 25 сентября 2020