В МФТИ создали 2D-материал для гибкой оптоэлектроники

Новый материал из разряда органических 2D-полимеров на основе особых молекул разработали ученые МФТИ и ИБХФ РАН. Наноразмерные поры в этом материале-монослое можно легко контролировать с помощью дизайна молекул, обеспечивая уникальное сочетание стабильности, упругости и ширины запрещенной зоны полупроводника. Потенциальное применение  2D-полимеров — изготовление элементов гибкой и управляемой оптоэлектроники. Результаты проекта опубликованы в международном научном журнале  FlatChem.

В МФТИ создали 2D-материал для гибкой оптоэлектроники

В последние десятилетия создан ряд новых нанопористых материалов, которые могут применяться в инновационных отраслях индустрии: адсорбции газов, гетерогенном катализе, накопление энергии и т.д. Размеры пор в них варьируются от 1-100 нанометров, а специфические свойства таких материалов – сенсорные, адсорбционные, каталитические и др, – связаны именно с наличием нанопор.   

Есть разные форматы создания таких материалов: так называемые  металлоорганические каркасы, сопряженные микропористые полимеры и т.д. Ковалентные каркасы имеют уникальную структуру за счет способа синтеза, который позволяет создать однородную пористость. Еще одним преимуществом является то, что такую структуру можно синтезировать в 2D и 3D микропористых сетях.  Кроме того, они химически и термически стабильны . 

Большой выбор мономеров позволяет регулировать размер пор и желаемые свойства материала. В настоящее время подобные пористые структуры используются для разделения различных газов, таких как углекислый газ и азот, ацетилен и этилен, этан и метан, этилен и метан  и т.д. 

Ученые МФТИ обнаружили, что подобные 2D-полимеры могут также применяться в сфере современной оптоэлектроники, благодаря своим уникальным свойствам. Они  изучили с помощью расчетов и предложили  два стабильных монослоя на основе органических молекул F4-TCNQ. 

«Мы проанализировали две возможные для них реакции: реакция тримеризации с получением монослоя ЦТФ и реакция образования вторичного амина с получением монослоя САФ. Все реакции показывают энергетическую выгодность конечного состояния. Стабильность монослоев SAF и CTF была подтверждена методом ab initio молекулярно-динамического моделирования при постоянных температурах 400, 600 и 800 K. Более того, быстрый нагрев до 3000 K с шагом температуры 2.15 K/фс не показал существенных изменений в атомной структуре», – рассказал один из авторов исследования д.ф-м.н, доцент кафедры химической физики функциональных материалов МФТИ Дмитрий Квашнин. 

Расчеты электронных свойств  2D-материала показали  полупроводниковое поведение монослоя с шириной запрещенной зоны около  1.5 эВ.

Данные, полученные в ходе исследования, показали перспективность применения предложенных монослоев в области гибких электронных и оптоэлектронных устройств.

mipt.ru

Источник: rlocman.ru

Next Post

В проекте RT и «Роскосмоса» космонавт расскажет о путешествиях по орбите Земли

Новая серия уникального международного проекта «Starbound. Путь к звёздам», запущенного RT совместно с госкорпорацией «Роскосмос», выйдет в эфире и соцсетях телеканала 31 июля. В ней российский космонавт Олег Кононенко расскажет, когда люди смогут свободно путешествовать по орбите Земли. Gettyimages.ru В целом этот эпизод будет посвящён истории космической программы России. Кононенко в […]